
Textures in OpenGL

There are 6 steps to using textures in OpenGL:
1. Enable texturing
2. Make a 2D array of colors for the texture
3. Set up parameters for how the texture wraps.
4. Say how the texture combines with other

material properties
5. Create the texture
6. Give texture coordinates to go with your

geometry.

The code in the following explanations is taken
from the TexSimpleFloat.java program.

1 To enable texturing:

 gl.glEnable(GL2.GL_TEXTURE_2D);

Note that OpenGL also supports 3D textures.
3D textures are interesting and useful, but the
textures are harder to create and we aren't
going to use them this term.

2. Make a 2D array of colors

As with splines, OpenGL wants to communicate
with the graphics card so it wants a buffer of
colors. Although conceptually a texture is a 2D
array, we need to write that into a flat 1D array. I
find it fairly easy to do something like the
following. For accuracy the number of ROWS and
COLS of the texture map should be powers of 2.

public void makeTexture(float buffer[]) {
 // ROWS and COLS are the size of the texture
 for (int i = 0; i < ROWS; i++)
 for (int j = 0; j < COLS; j++) {
 if (isEven(i/8+j/8))
 assignColor(buffer, i, j, 0f, 0f, 0f);
 else
 assignColor(buffer, i, j, 1f, 0f, 0f);
 }
}

where assignColor() copies the 3 color coordinates
into the buffer at index i*COLS*3+j*3

public void assignColor(float dest[], int i, int j, float colorR, float colorG, float colorB){
 dest[i*COLS*3+j*3]=colorR;
 dest[i*COLS*3+j*3+1]=colorG;
 dest[i*COLS*3+j*3+2]=colorB;
}

3. Setup parameters for how the texture wraps

If WRAP is set, texture coordinate 3.5 is the same
as 0.5.

For MAG (nification) the question is: If (s, t) aren't
integers, what point in the texture will (s, t) map
to?

gl.glTexParameterf(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_WRAP_S, GL2.GL_REPEAT);
gl.glTexParameterf(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_WRAP_T, GL2.GL_REPEAT);
gl.glTexParameterf(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_MAG_FILTER,
 GL2.GL_NEAREST);
gl.glTexParameterf(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_MIN_FILTER,
 GL2.GL_NEAREST);

Instead of GL2.GL_REPEAT you could say GL2.GL_CLAMP, which
means "don't wrap".

4. Say how the texture combines with other
materials:

gl.glTexEnvi(GL2.GL_TEXTURE_ENV, GL2.GL_TEXTURE_ENV_MODE, GL2.GL_REPLACE);

In place of GL2.GL_REPLACE you could say
GL2.GL_MODULATE.

"Replace' means to use the texture color in place of
any other color computation or material property.
"Modulate" means to blend the texture color with
color computed from the material properties.

5. Create the texture map
gl.glTexImage2D(GL2.GL_TEXTURE_2D, 0,
 GL2.GL_RGB, COLS, ROWS, 0, GL2.GL_RGB,
 GL2.GL_FLOAT, FloatBuffer.wrap(buffer));
The args are
 GL2.GL_TEXTURE_2D
 level (for recursive textures; we'll leave this 0)
 GL2.GL_RGB (format for texture)
 numbers of columns and rows; powers of 2
 border (should be 0)
 GL2.GL_RBG (format for output)
 GL_FLOAT (format for color coordinates)
 the buffer

 Finally, when creating polygons, assign a texture
coordinate to each vertex. Like colors, the texture
coordinates are properties that stay fixed until you
change them. When a vertex is created the current
texture coordinates are used for it. We set texture
coordinates with

 gl2.GLTexCoord2(s, t)

t refers to columns of the texture map, s to rows.

Multiple Textures

For both performance and convenience you
probably want to create and install all of your
textures at the start of the program, and then
invoke them when you need them.

See the program MultipleTextures.java for an
example of the following:

We do this in two steps.
1. gl2.glGenTextures(num, intList, offset)
 num is the number of textures you want to
 create, intList is a flat array of num integers,
 offset is usually 0.
2. gl2.glBindTexture(GL2.GL_TEXURE_2D, id)
 id should be one of the texture ids you
 generaeted with glGenTextures. If id is
 currently unused this creates a new texture,
 and stores it in id. Subsequent calls like
 glTexImage2D affect this texture. If id is used
 this makes that texture the current one, so
 texture coordinates refer to this texture.

Automatic Texture Generation

If you have complex polygons, calculating all of the
texture coordinates can be painful. OpenGL can
calculate the texture map as a direct mapping
from (x, y, z) world coordinates to (s, t) texture
coordinates. It defines s as
 s = ax+by+cz+d.
and defines t similarly.

The code is

gl.glEnable(GL2.GL_TEXTURE_GEN_S);
gl.glEnable(GL2.GL_TEXTURE_GEN_T);

gl.glTexGeni(GL2.GL_S, GL2.GL_TEXTURE_GEN_MODE, GL2.GL_OBJECT_LINEAR);
gl.glTexGeni(GL2.GL_T, GL2.GL_TEXTURE_GEN_MODE, GL2.GL_OBJECT_LINEAR);

gl.glTexGenfv(GL2.GL_S, GL2.GL_OBJECT_PLANE, planes, 0);
gl.glTexGenfv(GL2.GL_T, GL2.GL_OBJECT_PLANE, planet, 0);

This says "turn on texture synthesis for both s and
t and take the [a, b, c, d] parameters from arrays
planes and planet."

For example, suppose we have a triangle with
vertices (10, 0, 0), (0, 10, 0) and (0, 0, 10) and we
want s to be 0, 1, and 0,5 at these three points.
Then s = ax+by+cz+d gives us 3 equations in a, b,
c, and d::
 0 = 10a+d
 1 = 10b+d
 0.5 = 10c+d
3 linear equations under-determine 4 variables,
so there are multiiple solutions. One easy
solution is to take d=0; from this it is easy to
calculate a=0, b = 0.1, and c = 0.05, so our planes
array becomes {0, 0.1, 0.05, 0}

See program AutoGenTexture.java

To Make Textures From Image Files

1. Convert the image file to the PPM
(portable pixmap) format. Photoshop
can do this, or there are lots of format-
translation programs available on the
web.

2. Read the texture array from the file into an int[][]
array. The format for most ppm files and the one used
by Photoshop is

 P6
 # Any number of comment lines
 #
 ...
 cols rows max // as text integers
 if max < 256 the rest of the file consists of
 cols*rows*3 unsigned bytes, each byte
 representing a primary color in the
 range 0 to 255
 otherwise the rest of the file is cols*rows*3
 2-byte pairs, each pair representing a primary
 in the range 0 to 216-1

If the rows and columns aren't powers of 2, scale the
texture with

glu.gluScaleImage(GL2.GL_RGB, cols_in, rows_in,
 GL2.GL_FLOAT, original_array,
 cols_out, rows_out, GL2.GL_FLOAT, new_array)

Then put into a 1-dimensional buffer and proceed as
before.

See program FileTexture.java, which puts a texture from
file spots.ppm onto a rectangle.

To Wrap Textures Around Quadric Objects

There are 2 ways to do this: you can use quadric
textures or automatic texture generation. Quadric
textures are easy but don't give much control.
Automatic textures give some control but don't
tend to wrap as well onto rounded surfaces.

For quadric textures, create the texture as usual
with calls to glTexParameter() and glTexImage2().
Then call
 glu.gluQuadricTexture(quad_object, GL2.GL_TRUE)

to apply the texture.

See the program QuadricTextures.java. The upper
image is done with quadric textures.

To use automatic textures with quadrics, just
define the automatic textures as usual. In
OpenGL's terminology, on the texture array s
parameterizes the columns, t the rows. If that is
mapped onto a cylinder, t goes from 0 at the base
to 1 at the top; s goes around the cylinder from 0
to 1.

O a sphere s wraps around the latitude circles
(like the equator). t moves along the longitude
lines, from 0 at the south pole to 1 at the north
pole.

In the program QuadricTextures.java, the
lower quadric uses automatic textures.

Textures For Spline Surfaces

Again, there are 2 ways to texture spline surfaces:
spline textures and automatic textures. Automatic
textures work the same as elsewhere. For spline
textures create the texture as usual. You need to
enable mapping texture coordinates:

gl.glEnable(GL2.GL_MAP2_TEXTURE_COORD_2);

You need to make a 2x2 array of texture
coordinates, organized as a float buffer:

float texel[] = {0f, 0f, 1f, 0f, 0f, 1f, 1f, 1f}

This has (0, 0) in the upper left corner, (1, 0) in the
upper right, (0, 1) in the lower left, and (1, 1) in the
lower right.

Then, just as you normally call

glMap2f(...) to build a spline evaluator, you also
call
gl.glMap2f(GL2.GL_MAP2_TEXTURE_COORD_2, 0f, 1f, 2, 2, 0f, 1f,
 4, 2, FloatBuffer.wrap(texel));

to build an evaluator for the texture coordinates.
The arguments are the same every time. When
you then call glMapGrid2f() to create a mesh for
the splines and glEvalMesh2 to display it, the
texture coordinates are evaluated along with the
geometry and the texture is applied to the mesh.

See the programs
• SplineTexture.java, which puts a

checkerboard texture on a bottle,
• SplineFileTextureSpots.java, which puts a

texture from the file spots.ppm on the
bottle, and

• SplineFileTexture.java, which puts a texture
from the file Martini.ppm on one patch of
the bottle.

